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ABSTRACT 

We consider the differentiability of a conjugating homeomorphism for co- 
dimension-one hyperbolic flows, under certain measureability conditions. 
The simple central idea is to use symbolic dynamics to apply the analysis for 
the simpler case of internal maps. 

§1. Introduction 

A central problem in" the study of  hyperbolic systems is to classify them into 
classes with common dynamical properties. From the viewpoint of  ergodic 
theory it is natural to look for a measure-preserving isomorphism which 

conjugates the dynamics of  the two systems. When studying the topological 

dynamics it is more appropriate to require the conjugating map to be a 

homeomorphsim and so to classify up to topological conjugacy. For higher 

degrees of  differentiability in the two systems we can try to classify them up to 

conjugating maps which have appropriate degrees of differentiability. 

In this paper we shall investigate the relationship between these different 

types of conjugacy, particularly in the context of  Anosov flows. 

The idea of a Cr-rigidity theorem has been promoted in [14] and [5]. The 

basic question is: When can a measure isomorphism or topological conjugacy 

be 'lifted' to a C r conjugacy? (r > 1), i.e. the conjugating map should have a 

Cr-version. 

Feldman and Ornstein have a form of 'dynamical  rigidity theorem' which is 

applicable to geodesic flows on the unit tangent bundle of  surfaces of negative 
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curvature: Let ~ :  M--* M and Zt: M ' ~  M'  be 3-dimensional C 2- Anosov flows 

which preserve smooth measures and have C 1 non-integrable horocycle folia- 

tions, then any conjugating homeomorphism h : M ~ M '  is necessarily a 

C ~- diffeomorphism [5]. 

In this paper we shall consider several extensions of  this result. This will 

include the cases where there exists no smooth invariant measure, or the 

foliations are of class C ~ + ° (r > 1), or the flows are assumed to be co-dimension 

one Anosov flows. 

In Section 2 we develop the theme of C r- rigidity theorems, after Shub and 

Sullivan [14], in the setting of  piecewise C" expanding Markov interval maps. 

We recover their results for r >_- 2 as well as proving a more general Markov 

version. 
In Section 3 we introduce the symbolic dynamics for Anosov flows as 

developed and refined by Ratner and others [11], [ 12]. This is important in 

applying the preceding results for interval maps to Anosov flows. 

In Section 4 we study C-rigidity theorems for codimension one Anosov 

flows. 

In the final section, Section 5, we restrict our interest to C-rigidity theorems 

for 3-dimensional Anosov flows and prove our main results. 

The author's interest in these problems was motivated by the papers of  

Shub-Sullivan [14] and Feldman-Ornstein [5] and by lectures given by 

Dennis Sullivan at IHES (October-December 1984). 

I am grateful to Keith Burns for making the Feldman-Ornstein paper 

available to me and also to Howard Sealey for some discussions on its content. 

I would like to express my gratitude to the referee for many enlightening 

comments and suggestions. 

§2. Markov interval maps 

In this section we shall be concerned with Markov interval maps and the 

relationships between their equivalence classes when classified up to topologi- 

cal conjugacy, Cr-conjugacy, and (Lebesgue) measure-preserving conjugacy. 

The starting point for this analysis is the following result of Shub and 

Sullivan [14]: If f ,  g : S  l - .  S t are a pair of  strictly expanding C' maps (where 

2 < r < co) then any absolutly continuous map h : S  I --"S ~ satisfying h f =  gh 

must have a C-version. (Here an absolutely continuous map h : S 1 ---S ~ is one 

for which sets of  positive Lebesgue measure are carried to set of  positive 

Lebesgue measure.) 
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We shall consider interval maps which admit  discontinuities, providing they 

lie in a finite invariant set. Let 0 = x0 < xl < • • • < x~ = 1 be a finite set of  

disjoint points on the real line. Let f :  [0, I] --, [0, 1] be a map which is uniquely 

defined on C',  except possibly at the points Xo . . . . .  x~. In addition,  we assume 

that  for each x~ each of  the limits limx ~ x, f ix) ,  l imx, x, f (x )  lies in the finite set 

{x0 . . . . .  x~ } (for x0 and x,  only one such limit is considered). We call interval 

maps which have this property Markov maps. 
We shall from now onwards assume t h a t f i s  expanding. That  is, there exists 

fl > 1 such that  [ f ' (x )  I >= fl for all 0 < x < 1. (At X o , . . . ,  x ,  we may get more 

than one value f o r f '  by taking derivatives from the left and from the right.) 

One advantage of  expanding Markov maps is that they give a simple and 

concise way of  studying orbits under  iterations of  the map f :  [0, 1 ] ~ [0, 1]. 

Given a point w E[O, 1] the orbit w, fw, fZw . . . .  determines a sequence 

wl, w2, w3, • •. ~ (0, 1 . . . . .  n - 1 } where xw, < f iw  < xw,+ 1- The sequence w = 

(wi)~=0 associated with w will be uniquely defined, except in the case where the 

orbit of  w eventually lands in the set {xt . . . .  , x,  }. 

We can conveniently collect together these sequences as follows. Let A be the 

n × n matrix whose entries are either zero or unity according to the following 

prescription: 

A( i , j )={ lo  iff(xi'xi+O3-(xj'xJ+l)'" 

if  f(xi, x, + l) f~ (xj, xj + l) = ~ . 

(Our assumptions imply that these are the only possibilities.) Let ZA = 

{w Err0 {0 . . . . .  n -  1} IA(wi, wi+,)= 1}. Then we can define a metric on 

this space by d(y ,  z) = Z ~ n=o e(yn, z,)/p" where 

e( i , j )={ lo  i f / : ~ j ,  

i f i  = j .  

The shift a :  ZA ---ZA is given by (ax), =xn + L. With respect to the above 

metric a becomes a local homeomorphism.  

We define a maprr  ZA---'[O, 1] by rr(w) Ai=0 -i • = ~ f [x,~i, xw,+t]. Then rt 
satisfies the semi-conjugacy relation na = fn and is Lipschitz (by the use offl  in 

the definition of  the metric). 

Many different expanding maps will give rise to the same matrix A. Let us 

assume that g is another such map corresponding to 0 < y~ < • • • < y, = 1. 
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We shall also assume t h a t f a n d  g are consistent in preserving (or reversing) the 

orientations of  [x~, x~ + 1] and [y,, y~ + ,] respectively, for i = 0, 1 , . . . ,  n - 1. We 

then call f a n d  g consistent realisations ofA.  

Let n l a n d  rig: ZA ~ S  ~ be the associated semi-conjugacy maps f o r f a n d  g, 

respectively. These induce a piecewise continuous map h : S 1 ---- S 1 with hn i = 

7~g. 

PROPOSITION 1. (a) Let f and g be C a +" consistent realisations o f  A. An 

absolutely continuous map h : S ~ ~ S ~ such that h f - - f g  must necessarily be 

piecewise C1. Even stronger: 
(b) Let f and g be C r+~ consistent realisations of  A (r >= 1). An absolutely 

continuous map h : S 1 ~ S  ~ such that h f =  gh must necessarily be piecewise 
Cr +a 

PROOF. (a) With h defined as before we get the following commuting 

diagram: 

t7 

f C S  1 , S I D  g 

We shall now freely use results from the thermodynamic  formalism of  

0": ~'A ~ ~"A (cf.  [10]  and [4] for details). 

The map log l f ' l  °Tgf'Y,A---~R is a-H61der continuous by assumption. 

Accordingly, it has a unique equilibrium state #i on EA (i.e. there exists a 

continuous function u :  Y,A-~R such that dlti f /dlq= If'[ ° n l e x p ( u a -  u)). 
Furthermore,  the measure v I = n)*/2 I on S ~ is an ergodic f - invar iant  measure 

equivalent to Lebesgue measure. (This is essentially given in [3].) Similarly, if  

& is the unique equilibrium state for log [g'l °ng then n*& = vg is an ergodic 

g-invariant  measure equivalent to Lebesgue measure. 

As a preliminary step we observe that since h • viand vg are both ergodic and 

equivalent to Lebesgue measure (and thus each other) we have that h • v I = vg. 

Thus h is, in fact, a measure preserving conjugacy. Since we can write 

dh *l dh *l dh *vr.dvg 

dl dh * v I dvg dl 
a.e.  

and all terms on the right hand side of  this equality make sense, we can 
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take h'(x), the derivative of  h, to be defined a.e. The following step is similar 

to  [3] p. 18. 
The conjugacy h f =  gh gives that 

( l o g l h ' [ ) o f - l o g l h ' l  = ( l og lg ' l ) oh  - loglf ' ]  a.e. 

Since (loglg '[)  o ng and (log I f '  I ) ° zcf share the same equilibrium state/zf =/zg, 

we can deduce that 

( loglg ' l )  o 7rg - ( log l f ' l )  o ~rf = ucr - u 

where u : EA --" R is continuous. However, because of  ergodicity the equality 

[ ( log lh ' l )oTr f -  u]ocr = ( log)h ' l )°z~ i -  u 

gives that (log] h ' l )  o ~c - u is constant. In particular u = (log] h ' l  ) o z(r has a 

continuous version. The induced map ti : S 1 ~ R given by t~ o zr s = u is piece- 

wise continuous. From this we can conclude that h is piecewise C 1, as required. 

(b) In the event that f and g are piecewise C'+~ (r "_-__ 1), Markov, strictly 

expanding maps it is possible to follow the Shub-Sullivan proof  to deduce that 

i f  the conjugating homeomorphism is absolutely continuous, then it is piece- 

wise C '+". The main point is that we can change f a n d  g so that/~/ .= t = ¢tg, 

where l is Lebesgue measure. In order to do this we replace f b y  T l o f o  T 

where T(x)  = f dlts/dl(z)dz. We now show that dltr/dl > 0 can be shown to be 

of  class C ' -  ) ÷". Recall that d~i/dl is the positive (maximal) eigenfunction for 

the Perron-Frobenius  operator L : B --- B given by Lg(x)  = Zyy =x g (Y ) / l f ' (Y )  [ 
where B is the space of  piecewise C '  ~÷~ functions which is a Banach space 

with norm 

[ [ h{r- l'(x ) - h(r- I)( y ) l 1 
II h II = II h II ~ + II h'  II ~ + "'" + II h~'-l)II ~ + sup~+~ ~ -x~  ~ - 2  • 

We now have that f ,  T ( a n d  also T -l)  are C '÷". It follows that T -~ o f o  T i s  

piecewise C '÷" and also Lebesgue measure is the invariant measure for 
T - l o f o T .  

Similarly we can choose a C r÷~' m a p S : S l - ~ S  ' such that S - ~ o g o S  is 

piecewise C'+~ and Lebesgue measure is invariant.  From this we can deduce 

that the corresponding conjugacy S I oh o T is a piecewise linear interval 

exchange map, hence h is C'+". 

REMARK. The consistency condit ion has a pleasant, if  modest, topological 

formulation. Let M be the quotient space formed from S ~ by identifying the n 
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discontinuity points xl . . . .  , xn. The fundamental group of M is then n~(M) --~ 

Z ". We let e~ . . . . .  e, denote the generators. The map f :  M----M induces a 

transformation f*  : zr~(M)~ zq(M) which can be written as a matrix B = B(J) 

with entries 0. _+ 1. Then the condition t h a t f a n d  g are consistent realisations 

is equivalent to B ( f )  = B(g). 

§3. Hyperbolic flows and symbolic dynamics 

In his thesis on geodesic flows for manifolds of negative sectional curvature 

Anosov showed that many of the features of these flows were preserved for a 

broader class of flows satisfying a few simple axioms [1]. (Such flows were 

subsequently termed Anosov flows.) 

To make the connection between Anosov flows and interval maps we must 

appeal to symbolic dynamics and the construction of Markov partitions. 

Let M be a compact manifold and let 0, : M --* M be C ~. We say that 0 is 

Anosov if TM = E ° O E  ~ @E" where E °, E'  and E" are continuous, 

D0,-invariant bundles such that: 

(a) E ° is the one-dimensional bundle tangent to the flow direction; 

(b) there exist C, 2 > 0 such that 

II DO,(v) II ~ Ce-~' II v II for v e E ' ,  

II Do_,(v) II ~ Ce-;" II r II for v ~ E " .  

For x E M  the sets W ' ( x ) = ( y [ d ( O , x , O , y ) - * O  as t - - - + o c ) ,  WU(x)= 

(y  I d(O_tx, o_ty)---,O as t----+ oc} form CP-immersed submanifolds of 
dimensions k and l, respectively, where k = dim E'  and l = dim E u [9]. 

The stable manifolds form the k-dimensional C ~ leaves of a foliation ~ ' .  

Similarly, the unstable manifolds form/-dimensional C~-leaves of a foliation 

We recall that a foliationn e~ of an n-dimensional manifold M with p- 

dimensional leaves is called C q if there exists a family of C q charts ~, : U --- R" 

such that leaves of the foliation ~ (restricted to U) are carried to hyperplanes 

of  the form R p × (y )  (restricted to ~u(U)). 

Unfortunately, although the leaves o f ~  ' and ,P~ are C ~ it is only known, in 

general, that the foliations are continuous (i.e. C°). However, in the case of 

geodesic flows associated with locally symmetric compact manifolds of nega- 

tive curvature the foliations are known to be real-analytic (i.e. C '°) [7]. 

There is a third foliation ~0  of M for which the one-dimensional leaves of 
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~ 0  are simply the trajectories of  points in M under 0. The foliation .~0 is of  

class C ~. 
Following Ratner[  11 ], [ 12] we can construct Markov sections for the flow. 

Let To . . . . .  7",_ ~ be transverse (k +/)-dimensional  sections transverse to 

the flow direction. The basic idea is that we can keep track of  the orbit of  a 

point x ~ M by the sections it crosses. Thus for x ~ M we assume that ~x  

(t > 0) intersects the sections Tx,, Tx~, Tx~ . . . . .  Similarly we can assume that 

O_,x intersects Tx o, Tx_,, T~_:, . . .  (for t > 0). In particular the sequence x = 

(x,)_+~ tells us which sections the orbit o f x  passes through, in order, and that x 

lies on its orbits segment between Txo and T~,. The hyperbolicity assumption 

for Ansosov flows plays an important role here in that it allows the sections 

To . . . . .  T~_ ~ to be chosen so that the totality of sequences allowed forms a 
sequence space determined by an n × n matrix A with 0-1 entries. This space 

is denoted Xa and defined by 

XA = X ~  { O , . . . , n - - 1 ) l A ( x i , x i + l ) = l  . 

(There is a slight difficulty when the orbit of a point passes through the 

'boundary' of a section. In this event the orbit still determines only a finite 

number of sequences in a self-consistent way, cf. [12] for details.) 

We define a shift a : X~ ---- XA by (ax) .  = x .  + ~ and put a metric d on XA by 

+ : c  

d ( x , y ) =  Y~ e ( x . , y . ) / 2  I"1 

where 

e ( i , j )  = [0 
i f i  ~j~ 

! 1 i f / ~ j .  

With respect to this metric XA is compact and zero-dimensional and a becomes 

a homeomorphism. 

A sequence x ~ XA corresponds to an orbit segment in M and, in particular, 

to a point in T~ which we denote n(x) .  This defines a HOlder continuous 
n - 1  map n:XA ~ U,=o T,. Let r(x)  be the length of  the orbit segment between 

n(x )  and n(ax) ,  then r : XA ~ R r is a positive HOlder continuous function. 

Let X,~ = {(x, s ) ~ X A  × R ~ [ 0 < s < r(x)} where the points (x,  r(x))  and 

(ax,  0) are identified. We define the symbolic f low a[ : XJ ---, XJ by a[(x, s) = 
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(x, s + t), where we make use of  the identifications where appropriate. This 
can be thought of as flowing vertically under the graph of r. The map 
n:XA ~ (-Ji T, can be extended to n:X~ ~ M  by simply defining n(x, t ) =  
Otn(x), where x ~_ XA. A basic property of this construction is that n:  X~A ~ M 
satisfies na[ = ~tn, for all t ~R,  where n is a continuous, bounded-to-one, 

surjective semi-conjugacy [ 12]. 
In many problems about Anosov flows it is advantageous to 'lift' the 

problem to the symbolic flow where it may be more accessible (frequently 

through the use of techniques from thermodynamics). 
We should say a little more about the construction of the transverse sections 

TL . . . . .  T,. For each section T, there exists a point z~ ~ T, for which a 
neighbourhood of zi in the unstable manifold W~(z~) forms a k-dimensional 
submanifold of T~. That is, locally WU(zt) is contained in T,. Furthermore, if 

y ~ WU(z,) V~ Ti lies in the same path connected component as z~, then locally 
WS(y) is a/-dimensional  submanifold of T~. That is, locally WS(y) is con- 

tained in Ti. Thus T~ can be thought of as the union of sections of WS(y) which 

are 'ribs' held together by a 'spine' consisting of a section of W~(zi). 

If w ~XA satisfies that n(w) = z~, then W~(zi) restricted to 7 ~ is the image 

under n of the set (y ~XA [ Yk = wk, k _-< 0}. Let W~(z~, T~) denote the segment 
of W~(z ~) restricted to T~. We denote by H:  U~ T~ ~ Oi T~ the Poincar6 map 

induced by ~t, t > 0. (More precisely Hn(x)  = ¢,(x)rc(x).) 
The reason that orbits in M correspond to sequences in XA is that the 

sections To . . . . .  Tn-~ can be chosen to satisfy a certain Markovian property: 
H(W~(z~, T~)) N Tj (where A( i , j )  = 1) corresponds to a component of the 
image of an unstable manifold projected onto T~ along flow lines (cf. [ 11 ], [ 12]). 
There is a canonical map Pj : ~ ~ W~(zj) by projecting along the segments of 
stable manifolds whose union is Tj. Thus composing H with Pj gives us a 

map f :  WU(z~, T~) A H-~Tj ~ W~(zj, Tj) when A( i , j )  = 1. 
For Anosov flows in general it is not always the case that they preserve a 

smooth measure. However, for any Anosov flow we can construct the Sinai-  
Ruelle-Bowen measures p+ and # -  on M which project to smooth mea- 
ures on the unstable and stable manifolds respectively [4]. A necessary 
and sufficient condition for # to be a smooth ~-invariant measure is that 
p = ~ +  = p -  

We remark that any C ~ diffeomorphism h : M ~ M'  which conjugates the 

flows must necessarily take the SRB-measures for ¢ onto the corresponding 

measures for g [4]. Thus, in particular, if 0 and g preserve smooth measures 

then h carries one measure to the other. 
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§ 4 .  C o n d i m e n s i o n - 1  A n o s o v  f l o w s  

We shall now consider how the preceding analysis relates to the study of 

codimension-1 Anosov flows. These are Anosov flows for which either 

dim E '  = 1 or dim E ~ = 1. In particular, Anosov flows on any manifold of  

dimension either 3 or 4 are automatically codimension-1 Anosov flows. For  

definiteness we shall assume that dim E ~ = 1. (The case of  dim E ' --- 1 is easily 

recovered by reversing the flow under  t ~-> - t . )  

We shall assume that  the unstable foliation .~'~ is of  class C 1+~. The 

importance of  this lies in that the maps fj on segments of  (one-dimensional) 

unstable manifolds are of  class C ~ +°. In particular, we can interpret the finite 

family of  maps fj as a single C 1 +~ expanding Markov map of  the interval (since 

Pj, as defined in Section 3, in C r +% 

Assume that 0, : M --  M and ~,, : M '  --. M '  are Anosov flows and that  ¢ has 

codimension-1 stable manifolds (one-dimensional unstable manifolds). Let 

h : M - - . . M '  be a homeomorphism which conjugates ¢ and ~u. From the 

definitions we see that h preserves stable and unstable manifolds (and also that 

u/is also a codimension-I  flow). 

The transverse sections To . . . .  , T,_¿ constructed for ~ are carried to 

transverse sections Sj = h ( ~ ) , j  = 0 . . . . .  n - 1 for ¢/. Thus the flow ~,, : M ' ~  

M '  generates an interval map g in terms of  the Poincar6 map between sections. 
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Such is the construction that we have interval maps f :  I ~ I and g : J ~ J and a 

homeomorphism H : I ~ J  such that h f = g h .  (To be consistent with our 

earlier notation we should rescale to make I and J unit  intervals.) 

Let p + be the SRB measure for Ot (t > 0) and let v + be the corresponding 

SRB-measure for ~u, (t > 0). These measures give rise to measures equivalent to 

Lebesgue measure on unstable manifolds. I f  we assume h : M ~ M '  is a 

homeomorphism which conjugates the flows and is absolutely continuous with 

respect to the SRB measures, then this induces a homeomorphism h : I - - - J  

conjugating f and g and absolutely continuous with respect to Lebesgue 

measure. We know by Proposition 1 (a) that h : I ~ J is necessarily C ~. We can 

thus conclude that h : M  ~ M '  is necessarily C ~ (except possibly at points 

corresponding to the boundaries of  sections ) on unstable fibres. The difficulty 

on the boundaries of  Markov sections are irrelevant, since they are an artifact 

of  the construction and because the sections are constructed somewhat 

arbitrarily. In particular, any prechosen point can be made to be interior to the 

sections. I f  f lu  is cr+% then we can assume h : I  ~ J  is C r+~ and proceed as 

above to deduce that  h : M ----M' is C r +6. 

We summarize our conclusions below. 

PROPOSITION 2. (a) Let ~t : M ~ M and q4 : M ' ~  M '  be codimension- 1 

Anosov flows (with dim E u = 1) and C~+~ foliations ~,~u. Let  h : M - "  M '  be a 

homeomorphism which conjugates the flows and such that h is absolutely 

continuous with respect to the SRB-measure I~ +, v +. Then h is C ~ on unstable 

manifolds. Even stronger: 

(b) Let ~t : M--" M and ~,~ : M'---" M '  be Anosov flows with dim E u = 1 and 

C '+~ foliations .~u (r >= 1). Let h : M - - , M '  be a homeomorphism which 

conjugates the flows and such that h is absolutely continuous with respect to the 

SRB-measure l~ + and v +. Then h is C r +" on unstable manifolds. 

REMARK. We have chosen to confine ourselves wholly to the situation for 

flows. We should point out that somewhat analogous results are true for 

codimension-1 Anosov diffeomorphism. 

We give these below. 

(i) given two Anosov diffeomorphisms with dim E u = 1 (and C 1 +' foliations 

by unstable manifolds) conjugated by a homeomorphism which is absolutely 

continuous with respect to the (positive) SRB-measures, then the homeomor-  

phism is necessarily C L on unstable fibres. 

(ii) Given two Anosov diffeomorphisms (r > 1) with dim E u = 1 and C r+e 

foliations by unstable manifolds, then any homeomorphism which conjugates 



24 M. POLLICOTT Isr. J. Math.  

the diffeomorphisms and is absolutely continuous with respect to the SRB- 

measures is necessarily C r+* on the unstable fibres. 

§5. Three-dimensional Anosov flows 

In the previous section we considered codimenion-1 Anosov flows. The 

situation where dim M = 3 deserves separate attention, and is the subject of  
this section. When the manifold is 3-dimensional we are in the situation where 

dim E u =  1 =  dim E s and we can apply Proposition 2 to the stable and 

unstable manifolds simultaneously and hence deduce information on the 

differentiability of h on the entire manifold, rather than restricted to fibres of 
.~u and ~s .  

For 3-dimensional Anosov flows we can apply Proposition 2 to deduce that h 

is C ~+a along both the one-dimensional strong stable and strong unstable 

manifolds. Together with the orbit foliation these form a C ~ +" co-ordinate 
system. Hence we have the following. 

PROPOSITION 3. Let  q)t: M ~ M  and ~ut: M' - - - 'M '  be three-dimensional 

Anosov f lows with C ~ +~ stable and unstable foliations. Let  h : M - - .  M '  be a 

conjugating homeomorphism which is absolutely continuous with respect to 

each o f  the positive and negative SRB-measures.  Then h is necessarily a 

Ct-di f feomorphism . 

A special case of  the above theorem is where each flow has a smooth 

invariant measure (which is necessarily equal to both the positive and negative 

SRB-measures). In this context the above theorem would give that h is C ~ if 
and only if h is absolutely continuous with respect to the Riemannian 
measures. 

Feldman and Ornstein have shown that under the hypothesis that: the flows 

are C2; the flows preserve smooth measures; the foliations are CI; and the 

foliations omu and ~ s  are not integrable, then any homeomorphism which 

conjugates the two flows is necessarily C ~ [5] (and, in particular, preserves the 

smooth measure). Their proof makes essential use of the non-integrability 

condition (in itself an innocuous assumption in view of the results of Plante 

[10]). 

THEOREM. (a) Let  ~t : M ~ M and ~ut : M '  ~ M '  be 3-dimensional Anosov 

f lows with Cr +°-foliations (r >= 1) and assume h : M ~ M '  is a conjugating 

homeomorphism which is absolutely continuous with respect to each o f  the 
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positive and negative SRB-measures.  Then h is necessarily a Cr+~-diffeomor - 

phism . 

(b) Let  Ct : M ~ M and q/t : M '  ~ M '  be 3-dimensional Anosov flows with 

smooth invariant measures and C r +~ non-integrable unstable and stable folia- 

tions. Let  h : M ---, M '  be a conjugating homeomorphism,  then h is necessarily a 

C r + "-diffeomorphism. 

PROOF. (a) This is a direct consequence of Proposition 2(b). 

(b) By the Feldman-Ornstein result h must be a Cl-diffeormorphism and 

consequently preserve smooth measures. We can then 'enrich' the differentia- 

bility class of h to C r +" by applying part (a). 

EXAMPLES. (I) Feldman and Ornstein showed that the topological conju- 

gacy between geodesic flows for compact surfaces of strictly negative curvature 

must necessarily be of class C ~. From the theorem above it becomes clear that 

this conjugacy is as differentiable as the foliations. Hurder and Katok have 

established that the foliations are C ~ +~, for any 0 _-< a < l, and so we can 

slightly sharpen the Feldman-Ornstein result to say the conjugacy is C ~ +~ 

(II) For compact surfaces of constant negative curvature the foliations for 

the associated geodesic flow are known to be real analytic. It is a fact, already 

known to people in the field, that any conjugating homeomorphism h between 

two such flows is algebraic. Another proof is to use our theorem to first deduce 

that it is analytic. Since the unit tangent bundles have PSL(2, R) as universal 

covers, the lift/~ : PSL(2, R) ~ PSL(2, R) of h must be algebraic. 

(III) In a recent paper E. Ghys constructs examples of 'exotic '  3-dimensio- 
nal Anosov flows for which the foliations are all smooth but not analytic [6]. It 

is observed there (Remarque 4.8) that any conjugating homeomorphism 
between two such flows in smooth. This also follows immediately from our 

theorem. 

REMARK. We can, of  course, derive discrete versions of  these results for 

Anosov diffeomorphisms: 

(i) Let f :  M ---M and g:  M ' - - , M '  be C t +~ two-dimensional Anosov diffeo- 

morphisms (with C 1 +~ stable and unstable foliations). Let h : M - - , M '  be a 

conjugating homeomorphism which is absolutely continuous with respect to 

each of  the SRB-measures (both positive and negative). Then h is necessarily a 

C~- diffeormorphism. 

(ii) Let f :  M --- M and g : M '  --- M '  be two-dimensional Anosov diffeomor- 

phisms with C "+~ stable and unstable foliations (r > 1). Let h : M ~ M '  be a 
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conjugating homeomorphism which is absolutely continuous with respect to 

each of  the positive and negative SRB-measures. Then h is necessarily a C ~+° 

diffeomorphism. 

Appendix: Cantor sets and Hausdorlf dimension 

In the previous formulation the maps f :  S~-~S ~ were surjective and 

Lebesgue measure was the appropriate measure to study. We now want to 

consider a Cantor set in the interval which is invariant under  an expanding 

transformation. In particular, we want to study the different types for conju- 

gating maps which can occur between two such systems. 

Let Ii . . . .  , I ,  be disjoint closed intervals in S ~. Let f :  Ui=l  Ii ~ S Z be a 

Cr-map on each of  the intervals I~ which is strictly expanding, i.e. I f ' (x) l  > 
fl > 1 f o r a l l x ~  U n = ~ L and where end points are mapped outside the union of  

oo n 

intervals. Let A be the limit set A = Nj=0 f - J (  Ui=I Ii)" Assume that  A is a 
Cantor set. 

There is an accepted notion of  'size' of  subsets of the interval called the 

Hausdorff  dimension. Since A is a compact metric space we can define the 

Hausdorff  dimension S as follows: For p > 0 and a countable open cover o//of 

A let d(p, J//) = Ew~(d iam U) p. For any e > 0 we let d~(p) = inf~ d(p, ql), 
where the infimum is taken over all countable covers for which diam U =< e for 

each UEoI1, and let d(p) = sups>0 dr(p). There exists a unique 0 _-< 6 _-< 1 such 

that d(p) = 0 forp  > 6 and d(p) = + ~ forp  < 6. The value 6 is defined to be 

the Hausdorffdimension of A. 

A set of  positive Lebesgue measure has Hausdorff  dimension 1 and a 

countable set has Hausdorf fd imension 0. In the above context it can be shown 

that 0 < 6  < 1. 

Associated with A and 6 is a canonical measure/z, supported on A, called the 

Hausdorffmeasure and defined by 

dlzf= ]f ,  la, 
du 

Assume that A a cantor set, i.e. uncountable, closed and nowhere dense. 

Assume f(Ii) Al~ v ~ I j  cf(I~) .  Then it follows that f is conjugate to 

a : ZA --" Y'a for an appropriate A. If  f ,  g are two such maps which are both C'  

and give rise to the same matrix A, then we shall again use the term consistent 
realisations to describe them. 

Assume (Ay,/q, 6y) and (Ag, &,  4 )  are the limit sets and Hausdorffmeasures  
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and dimensions associated wi thfand  g, respectively. There is a canonical map 

from A/to A s taking points given by intersections of intervals Oj~= 0 f - "  (Ii,) to 
cc j • +co points Aj =o g -  (Jij) where (lj)j =o ~ 2: 4. If h" A : ~  Ag is the canonical map and 

h , # :  =/~g, then by the definition of Hausdorff measure we see that 

i f ,  fa: = dv: f= dvgg oh = {g'la, oh. 
dvf dug 

I fg"  ~ 0 on some neighbourhood U, then by the implicit function theorem 
h Ih-~v is C r-~. Given x ~ A : ,  choose n such that f " ( h - l U ) g x ,  then in a 

neighbourhood of x we have that h ( y ) =  fn  o h og-~(y)  is well defined and 
C ~- ~. Thus h is C r- 1. This approach will only fail i fg  is piecewise linear. I fg  is 

piecewise linear and f i s  not, then we simply interchange them. If f and g are 
both piecewise linear, then the result follows simply. This is close in spirit to 
the Sullivan-Shub argument [14]. We summarise below. 

PROPOSITION 4. Let f ,  g be Cr-consistent realisations for A where h : Af--, 
A s preserves the Hausdorffmeasure. Then h extends locally to a conjugacy o f  
class C ~- ~. 

APPLICATION. We recall Bowen's result that all one-dimensional Axiom A 

flows (restricted to the non-wandering set) are homeomorphic to suspended 

flows [2]. Assume that such an Axiom A flow occurs in a 3-dimensional 
manifold. Choose transverse sections to the flow and consider the Hausdorff 
measure of the intersection with the non-wandering set. A conjugating homeo- 
morphism between two such C r flows will have a C r- ~-extension if and only if 
h preserves the Hausdorffmeasure on sections. (This appeals to Proposition 4.) 
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